Exploring Soft ECC Decoding

Growing interest for Software Defined Radio (SDR)

Source Decoder Channel Receiver

Figure 1: Simplified communication chain

- Leverage powerful, energy efficient procs (x86, ARM)
- Reduce dev. cost and time to market
- Validate and optimize new algorithms
- Enable Cloud computing-based architecture for Radio Access Networks (C-RAN)

Recent Successive Cancellation soft decoder for Polar codes [1] strongly benefit from modern CPUs capabilities and SIMD units, open the way to a wide optimization range.

Introducing AFF3CT, a software environment for exploring ECC decoders.

Decoding of Polar Codes

The Successive Cancellation (SC) decoding algorithm: a depth-first binary tree traversal algorithm based on 3 key functions:

\[
\begin{align*}
 f(\lambda_n, \lambda_0) &= \text{sign}(\lambda_n, \lambda_0), \min(|\lambda_n|, |\lambda_0|) \\
 g(\lambda_n, \lambda_{n-1}) &= (1 - 2\lambda_n) + \lambda_{n-1} \\
 h(\lambda_n, s_n) &= (s_n \oplus s_{n-1})
\end{align*}
\]

Figure 2: Full SC decoding tree (N = 16)

Conclusion

State of the art SC optimizations and performances
- Inter/intra-frame SIMD implementations
- Generated and dynamic decoders

Energy consumption analysis
- Software SC decoder = only 14 nJ per bit, 65 Mbps (ARM Cortex-A57 @ 1.1GHz, N = 4096, R = 1/2)
- Performance and energy consumption comparison on big.LITTLE ARM32/64 and Intel x86 processors

References

A Fast Forward Error Correction Tool (AFF3CT): Generic ECC Simulation Framework

AFF3CT: a software dedicated to simulations of digital communications with channel coding

http://aff3ct.github.io

- Support many codes: Polar, Turbo, Convolutional, Repeat and Accumulate and LDPC (coming soon)
- Very fast simulations, take advantage of today CPUs architecture (hundreds of Mb/s on Intel Core i5/7)
- Written in C++11 (SystemC/TLM support)
- Monte-Carlo multi-threaded simulations
- From 10 to 1000 faster than MATLAB code
- Portable: run on Linux, Mac OS X and Windows
- Open-source code (under MIT license)

Energy Consumption Analysis of Software Polar Decoders on Low Power Processors

Adrien Cassagne, Olivier Aumage, Camille Leroux, Denis Barthou and Bertrand Le Gal

Figure 3: Simulated BER and FER for the Fast-SCC decoder

Experiments and Measurements

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Impl.</th>
<th>T (µs)</th>
<th>f (MHz)</th>
<th>E (nJ)</th>
<th>P (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7-450MHz</td>
<td>seq.</td>
<td>3.1</td>
<td>655</td>
<td>37.8</td>
<td>0.117</td>
</tr>
<tr>
<td>intra</td>
<td>13.0</td>
<td>158</td>
<td>9.5</td>
<td>0.123</td>
<td></td>
</tr>
<tr>
<td>inter</td>
<td>21.8</td>
<td>1506</td>
<td>6.0</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td>A53-450MHz</td>
<td>seq.</td>
<td>2.7</td>
<td>996</td>
<td>29.0</td>
<td>0.082</td>
</tr>
<tr>
<td>intra</td>
<td>10.1</td>
<td>203</td>
<td>7.9</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>inter</td>
<td>17.2</td>
<td>1902</td>
<td>5.1</td>
<td>0.088</td>
<td></td>
</tr>
<tr>
<td>A15-1.1GHz</td>
<td>seq.</td>
<td>7.5</td>
<td>274</td>
<td>122.0</td>
<td>0.919</td>
</tr>
<tr>
<td>intra</td>
<td>35.2</td>
<td>58</td>
<td>28.2</td>
<td>0.991</td>
<td></td>
</tr>
<tr>
<td>inter</td>
<td>62.8</td>
<td>522</td>
<td>17.4</td>
<td>1.039</td>
<td></td>
</tr>
<tr>
<td>A57-1.1GHz</td>
<td>seq.</td>
<td>9.2</td>
<td>222</td>
<td>78.9</td>
<td>0.750</td>
</tr>
<tr>
<td>intra</td>
<td>39.2</td>
<td>52</td>
<td>21.1</td>
<td>0.826</td>
<td></td>
</tr>
<tr>
<td>inter</td>
<td>65.1</td>
<td>503</td>
<td>14.2</td>
<td>0.923</td>
<td></td>
</tr>
<tr>
<td>inter</td>
<td>221.8</td>
<td>40.5</td>
<td>9.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inter</td>
<td>632.2</td>
<td>15.8</td>
<td>9.997</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Variation of the energy-per-bit (E_b) depending on the cluster frequency (dynamic code, intra-, inter-frame). A7 performance is on the left and A15 on the right. N = 4096 and R = 1/2. Dark colors and light colors stand for CPU cluster and RAM energy consumption, resp.

Table 1: Characteristics for each cluster (T is the information throughput), for dyn. decoder. N = 4096, rate R = 1/2. The RAM consumption is not included in E_b and in P.

Figure 6: Ranking of the different approaches along 5 metrics. In red, inter-frame vectorization performance and in blue, intra-frame performance. Solid color is for the dynamic versions, dotted is for the generated versions. Each version is sorted along each of the 5 axes and the best version for one axe is placed further from the center.

Contact

Contact e-mail: adrien.cassagne@inria.fr

Acknowledgements

This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the framework of the "Investments for the future" Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02).